
APyTypes: Algorithmic Data Types in Python for Efficient Simulation of Finite
Word-Length Effects

1st Mikael Henriksson
Dept. of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

mikael.henriksson@liu.se

1st Theodor Lindberg
Dept. of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden
theodor.lindberg@liu.se

3rd Oscar Gustafsson
Dept. of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden
oscar.gustafsson@liu.se

Abstract—A new Python library, APyTypes, suitable for simu-
lating and exploring finite word-length effects is presented. The
library supports configurable bit-accurate fixed- and floating-
point types of both scalars and multidimensional arrays and
uses a C++ backend to accelerate runtime performance. The
underlying design principles of the library are introduced and
examples show how it can be used. We argue that APyTypes
have significant advantages over existing arithmetic libraries,
especially from a hardware design perspective. Finally, some
directions for further work are outlined.

1. Introduction

Custom word length bit-accurate fixed- and floating-
point data types in high-level languages are useful tools for
algorithm and hardware designers. It allows for quick and
easy word-length exploration of complex systems without
having to resort to hardware description languages (HDLs)
and simulators, where development time is longer and more
error-prone. High-level programming languages offer better
runtime performance compared to digital hardware sim-
ulators, making high-level simulations of digital systems
more tractable when doing hardware design exploration,
especially in the early design phases. With Python being
used more frequently in algorithm design, there is a need
for custom bit-accurate data type support in Python to bridge
the gap between algorithm design and hardware implemen-
tation.

Some earlier efforts to implement custom word length
bit-accurate fixed-point types in Python have been made.
Notable examples include fxpmath [1] and SPFPM [2]
which support arbitrary precision fixed-point arithmetic.
However, as they are written in pure Python, their perfor-
mance may be a bottleneck. In addition, gmpy2 [3], a Python
binding for the GNU Multiple Precision (GMP) library [4],

The first two authors contributed equally to the work.
This work was financed in part by the ELLIIT strategic research environ-
ment through the project D3 ACRE – Approximate Computing Reducing
Energy, and the Swedish Foundation for Strategic Research through the
project Large Intelligent Surfaces – Architecture and Hardware.
The documentation for APyTypes is found at: https://apytypes.github.io/ .
Install APyTypes using pip install apytypes.

supports custom floating-point formats similar to the work
presented here, though the underlying binary representation
is not readily obtainable. Although fxpmath supports arrays,
whereas SPFPM and gmpy2 do not, it currently does not
support matrix multiplication. It may be convenient to have
fixed- and floating-point support in the same library, which
these libraries do not.

The Xilinx HLS Arbitrary Precision Types (AP
Types) [5] and Siemens EDA Algorithmic C Datatypes
(AC Types) [6] are two examples of open-source C++
software libraries that support custom word length bit-
accurate arithmetic using fixed- and floating-point numbers.
Both AC Types and AP Types are useful tools for word-
length exploration and bit-to-bit co-verification of complex
digital systems. In the case of AC Types, the fixed-point
data types are usable with Siemens High-Level Synthesis
(HLS) tools and support a variety of synthesizable digital
signal processing (DSP) and machine learning (ML) digital
design blocks. However, AC Types and AP Types cannot
be efficiently used in an interactive manner as their C++-
design cycle require re-compilation every time a word length
changes. Hence, they cannot be integrated with Python in a
simple way.

In this work, APyTypes, a Python software package for
custom word length bit-accurate fixed- and floating-point
arithmetic is presented. APyTypes is designed with custom
hardware design in mind and tries to accommodate the needs
of hardware designers first. APyTypes uses a backend writ-
ten in C++ to accelerate arithmetic operations and manage
memory efficiently. Furthermore, APyTypes include array
types of fixed- and floating-point numbers for efficient tensor
arithmetic, and it utilizes Python contexts for even more
fine-grained control of implementation details relevant to
hardware designers.

The primary design goal of APyTypes is to be a
hardware-relevant cross-platform Python software library for
algorithm and digital hardware designers, leveraging the
flexibility of the rich Python ecosystem. The intended library
use case is bit-accurate finite word-length effect design
exploration of complex digital systems, and to aid users in
creating “golden references” for bit-to-bit co-verification of
implemented algorithms using custom word lengths.

2. The APyTypes Library

APyTypes defines two data types for fixed-point arith-
metic, APyFixed which is a scalar fixed-point type,
and APyFixedArray which is a multidimensional ar-
ray fixed-point type. The fixed-point types support bit-
accurate two’s complement arbitrary precision arithmetic,
currently implemented using mini-GMP [4]. Similarly, APy-
Types define bit-accurate scalar and array floating-point
types, APyFloat and APyFloatArray. The floating-
point types generalize the convention of the IEEE-754
floating-point standard [7] to custom word lengths, similar to
FloPoCo [8]. Currently, the floating-point types are limited
to 32 exponent bits and 64 mantissa bits.

All of these four fundamental types can be used in
standard arithmetic expressions much like the Python built-
in types. Scalars are used like the built-in types float
and int, and array types behave much like the NumPy [9]
library array type numpy.ndarray. Besides elementary
arithmetic operations, some convenience functions are pro-
vided: creating objects from built-in floats and strings, cast-
ing to floats, comparison operators, shift operators, LATEX-
formatted output, and more. In addition, exact comparisons
to native Python types are supported. To obtain an underly-
ing binary representation, the method to_bits is used.
The APyTypes library also contains varying quantization
modes, overflow modes, and Python contexts that give users
more fine-grained control over implementation details.

2.1. Fixed-Point Representation

Each APyFixed and APyFixedArray object has an
associated attribute bits > 0 that determines the word
length of the stored fixed-point number. They also have two
attributes int_bits and frac_bits that determine the
location of the binary point. Any two of these three bit at-
tributes can be used when constructing a fixed-point object.
All fixed-point arithmetic operations result in a type wide
enough to accommodate its result1. That way, a hardware
designer specifies exactly, using the cast method, where
and how the word length is reduced in an algorithm. This
follows the principle of most libraries, including AC Types,
AP Types, and the VHDL Generic Fixed-Point Package
[10]. In Table 1, the resulting word length of elementary
arithmetic operations is shown. Listing 1 shows creation
and arithmetic for APyFixed, illustrating resulting word
lengths.

2.2. Floating-Point Representation

The implementation of floating-point types follows a
generalization of the IEEE 754 standard [7], similar to
FloPoCo [8]. A floating-point number is represented using
three fields; a sign, a biased exponent, and an integral

1. Except for division, where an infinite number of bits may be required
to represent the result exactly, e.g., 1/3.

TABLE 1. RESULTING WORD LENGTHS FOR FIXED-POINT
OPERATIONS.

Op. Resulting int_bits Resulting frac_bits
a± b max (aint bits, bint bits) + 1 max (afrac bits, bfrac bits)
a× b aint bits + bint bits afrac bits + bfrac bits

a / b aint bits + bfrac bits + 1 afrac bits + bint bits

−a, |a| aint bits + 1 afrac bits

Listing 1. Initialization and operations using APyFixed.
import APyFixed from apytypes import QuantizationMode

a = APyFixed(7, bits=5, int_bits=2) # 0.875 = 7/2**(5-2)
b = APyFixed.from_float(3.5, int_bits=4, frac_bits=1)
c = a + b # APyFixed(35, bits=8, int_bits=5) = 4.375
d = a - b # APyFixed(235, bits=8, int_bits=5) = -2.625
e = a * b # APyFixed(49, bits=10, int_bits=6) = 3.0625
f = a / b # APyFixed(32, bits=11, int_bits=4) = 0.25

Cast variable to different format (h = 1.125)
g = APyFixed.from_str("1.118297576904296875",

int_bits=2, frac_bits=18)
h = g.cast(frac_bits=4, quantization=QuantizationMode.RND)

mantissa. Using this convention, a normalized floating-point
number x is represented as

x = (−1)sign × 2exp−bias × (1 + man× 2-man_bits), (1)

with an exp_bits large exponent, a man_bits large
mantissa, and a constant bias. The bias is given as an
optional parameter that can be set to any non-negative
value. Special numbers such as subnormals, infinities, and
not a number (NaN) are supported and can be detected
using Python properties like is_subnormal, is_inf,
and is_nan. An APyFloat object can be initialized by
explicitly setting the five fields in (1) directly, from a bit
pattern, or from a native Python floating-point, as shown in
Listing 2.

Listing 2. Initialization options for APyFloat.
from apytypes import APyFloat

Three identical floating-point values (1.75)
a = APyFloat(sign=0, exp=15, man=3, exp_bits=5, man_bits=2)
b = APyFloat.from_bits(0b0_01111_11, exp_bits=5, man_bits=2)
c = APyFloat.from_float(1.75, exp_bits=5, man_bits=2)

Unlike APyFixed, and as is common for floating-
point, arithmetic results involving APyFloat inherit the
word length of its operands. Conversions between different
APyFloat formats are performed using the cast method
with the target exponent and mantissa bit widths specified,
and an optional parameter for bias and quantization mode.

APyTypes supports operations with operands represent-
ing different floating-point formats. Using mixed floating-
point arithmetic with APyFloat, the resulting exponent
and mantissa bit widths equal the largest of each of its
operands, as demonstrated in Listing 3. Smaller formats are
thus conveniently extended while quantizing larger formats
is performed explicitly through the cast method.

Listing 3. Operations using APyFloat.
from apytypes import APyFloat
from apytypes import QuantizationMode

a = APyFloat.from_float(9.625, exp_bits=4, man_bits=6)
b = APyFloat.from_float(2.125, exp_bits=4, man_bits=6)
c = APyFloat.from_float(-2.25, exp_bits=3, man_bits=8)

Word length is kept for same input format
APyFloat(sign=0, exp=10, man=30, exp_bits=4, man_bits=6)
d = a + b # 11.75

Word length is increased for mixed input formats
APyFloat(sign=1, exp=11, man=90, exp_bits=4, man_bits=8)
e = a * c # -21.625

APyFloat(sign=1, exp=11, man=22, exp_bits=4, man_bits=6)
mode = QuantizationMode.TIES_ZERO
f = e.cast(man_bits=6, quantization=mode) # -21.5

2.3. Array Types

The library array types APyFixedArray and
APyFloatArray are used to hold multiple scalars of the
same word length in one contiguous memory layout. These
types make an effort to perform redundant arithmetic,
like linear algebra operations, efficiently. Like arrays in
NumPy [9], APyTypes arrays have an associated shape
that determines the legality and mode of operation for
standard linear algebra operations between arrays.

It is possible to convert an APyTypes array to and from
a NumPy array of floating-points, using to_numpy and
from_float respectively. This makes it convenient to
use APyFixedArray and APyFloatArray with other
standard Python library tools. For example, it is possible to
plot the data of APyFixedArray and APyFloatArray
using Matplotlib 3.6 or higher [11] or draw random data
from NumPy random variables. This is shown in Listing 4.

Listing 4. Matrix multiplication using APyFixedArray with random data
drawn from NumPy, plotted using Matplotlib.
from apytypes import APyFixedArray
import matplotlib.pyplot as plt
import numpy as np

Fixed-point matrix (100 x 100) of normal distributed data
An = np.random.normal(1, 2, size=(100, 100))
A = APyFixedArray.from_float(An, bits=10, int_bits=3)

Fixed-point vector of uniformly distributed random data
bn = np.random.uniform(0, 1, size=100),
b = APyFixedArray.from_float(bn, int_bits=4, frac_bits=5)

Fixed-point matrix-vector multiplication
Resulting word length: int_bits=14, frac_bits=12
c = A @ b.T

Plot resulting APyFixedArray using Matplotlib
plt.plot(c)

The word length of array-type arithmetic scales in a
similar fashion to its scalar counterpart. Importantly, for ma-
trix multiplication with APyFixedArray, the word length
grows logarithmically with matrix size and not linearly.

2.4. Accumulator Contexts

By using APyTypes, a user has full control of the
word length between arithmetic operations through static
word-length inference and explicit word-length casting. As
hardware designers are typically also interested in the word
lengths used inside of standard algebraic operations, APy-
Types supports hardware-aware contexts that give even more
control to its users.

The dedicated accumulator context classes make it pos-
sible to control the size of accumulators used when per-
forming inner products or matrix multiplications. Contin-
uing the code of Listing 4, a user can control the matrix
multiplication-accumulator word lengths using the code in
Listing 5.

Listing 5. Matrix-vector multiplication using an accumulator context.
from apytypes import APyFixedAccumulatorContext

Perform matrix-vector multiplication using full precision
c = A @ b.T # Accumulator size: int_bits=14, frac_bits=12

Perform matrix-vector multiplication using a narrow
accumulator with fixed-point rounding (ties towards
infinity) after each scalar multiplication
m = QuantizationMode.RND
with APyFixedAccumulatorContext(frac_bits=9, quantization=m):

d = A @ b.T

There is a similar context which is used to control the word
length of floating-point intermediate results.

2.5. Quantization

One of the most important aspects of finite number
arithmetic is how quantization is performed. As the need
for quantization is application-depended, this for a hardware
designer often entails spending time implementing a set
of quantization modes and running HDL simulations for
evaluation. APyTypes accelerates this process by supporting
several different quantization modes and having an API that
can readily be parametrized. Table 2 shows the currently
supported quantization modes. As noted, there are often
aliases to support the ”common” name used, which some-
times differ between fixed-point and floating-point arith-
metic.

In floating-point arithmetic, the result will be quantized
using the currently selected quantization mode. The default
mode TIES_EVEN can be changed using the static function
set_float_quantization_mode or, preferably, by
using what APyTypes refers to as a quantization context.
Within a quantization context, the current quantization mode
is changed temporarily for a specific section of the code, and
it will automatically be reverted when the context is exited,
as shown in Listing 6. Quantization contexts can be also
nested, allowing for a high degree of freedom in simulations
where multiple quantization modes are used.

For stochastic rounding, APyTypes automatically gen-
erate a pseudo-random seed when loaded, but the random
number engine of APyTypes can also be seeded by the user
via the Python API as shown in Listing 7. This makes it
possible to create deterministic runs and facilitates analysis.

TABLE 2. SUPPORTED QUANTIZATION MODES, QUANTIZATIONMODE .

Quantization mode Name (Alias)
Round to nearest, ties to even RND_CONV (TIES_EVEN)
Round to nearest, ties to odd RND_CONV_ODD (TIES_ODD)
Round to nearest, ties to away RND_INF (TIES_AWAY)
Round to nearest, ties to zero RND_ZERO (TIES_ZERO)
Round to nearest, ties to positive
infinity

RND (TIES_POS)

Round to nearest, ties to negative
infinity

RND_MIN_INF (TIES_NEG)

Round towards positive infinity TRN_INF (TO_POS)
Round towards negative infinity TRN (TO_NEG)
Round away from zero TRN_AWAY (TO_AWAY)
Round towards zero TRN_ZERO (TO_ZERO)
Magnitude truncation (add sign-bit) TRN_MAG
Jamming (von Neumann rounding) JAM
Unbiased jamming JAM_UNBIASED
Stochastic rounding with equal
probability

STOCH_EQUAL

Stochastic rounding with weighted
probability

STOCH_WEIGHTED

Listing 6. Using APyFloatQuantizationContext.
from apytypes import QuantizationMode
from apytypes import APyFloatQuantizationContext

Addition using the default round to nearest, ties even
c = a + b

Addition using round towards zero
with APyFloatQuantizationContext(QuantizationMode.TO_ZERO):

d = a + b

Subtraction using the default round to nearest, ties even
e = a - b

2.6. Jupyter Notebook Integration

LATEX-formatted output is available in enabled environ-
ments, Jupyter Notebooks and Spyder to mention two. In
such environments, the representation of a fixed-point num-
ber could look like

35

23
= 4.375, (2)

and a floating-point number could be displayed as(
1 +

9

24

)
218−15 = 25× 2−1 = 12.5. (3)

3. Future Plans

Future development plans for APyTypes include explicit
support for unsigned numbers. Configuring floating-point

Listing 7. Seeding the quantization context.
Calculation with stochastic weighted quantization
and an initial seed of 0x1234
seed = 0x1234
mode = QuantizationMode.STOCH_WEIGHTED
with APyFloatQuantizationContext(mode, seed):

e = a + b

numbers to, e.g., not support subnormal numbers or infinities
is planned, as well as the simplified FloPoCo floating-point
format [8]. Support for generating test and verification data
in suitable formats should be added. A larger effort is to
generate code suitable for HLS tools.

4. Conclusions

APyTypes is a new Python software library for sim-
ulation of finite word-length effects, and bit-to-bit co-
verification of digital systems. Developed with hardware
designers in mind, it supports bit-accurate fully custom
fixed- and floating-point arithmetic of both scalars and mul-
tidimensional array types. By moving bit-accurate hardware
simulations from HDL and digital simulators to a high-
level Python library using a C++ backend, APyTypes has
the potential to greatly accelerate both development time
and simulation run-time of complex digital systems, with-
out compromising the intricate details offered by HDLs.
By leveraging Python contexts, APyTypes give hardware
designers fine-grained control of arithmetic operations us-
ing the introduced accumulator- and quantization contexts.
Finally, APyTypes offer a variety of quantization modes,
both classical ones and stochastic ones, that can be paired
with the contexts for easier exploration of the effect caused
by different quantization modes.

References

[1] F. Alcaraz, “fxpmath,” 2024. [Online]. Available: https://github.com/
francof2a/fxpmath

[2] R. Penney, “Simple Python fixed-point module (SPFPM),” 2023.
[Online]. Available: https://github.com/rwpenney/spfpm

[3] gmpy2 authors, “gmpy2,” 2024. [Online]. Available: https://github.
com/aleaxit/gmpy

[4] T. Granlund and the GMP development team, GNU MP: The GNU
Multiple Precision Arithmetic Library, version 6.3.0, 2023. [Online].
Available: http://gmplib.org/

[5] Xilinx, “HLS arbitrary precision types library,” 2019. [Online].
Available: https://github.com/Xilinx/HLS arbitrary Precision Types

[6] Siemens EDA, “Algorithmic C (AC) datatypes,” 2022. [Online].
Available: https://github.com/hlslibs/ac types

[7] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, 2019.

[8] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Des. Test. Comput., vol. 28, no. 4, pp. 18–27,
Jul. 2011.

[9] C. R. Harris et al., “Array programming with NumPy,” Nature, vol.
585, no. 7825, pp. 357–362, Sep. 2020.

[10] “IEEE standard for VHDL language reference manual,” IEEE Std
1076-2019, pp. 1–673, 2019.

[11] T. A. Caswell, A. Lee, M. Droettboom, E. S. de Andrade, T. Hoff-
mann, J. Klymak, J. Hunter, E. Firing, D. Stansby, N. Varoquaux,
J. H. Nielsen, B. Root, R. May, P. Elson, J. K. Seppänen, D. Dale,
J.-J. Lee, D. McDougall, A. Straw, P. Hobson, hannah, O. Gustafsson,
G. Lucas, C. Gohlke, A. F. Vincent, T. S. Yu, E. Ma, S. Silvester,
C. Moad, and N. Kniazev, “matplotlib/matplotlib: Rel: v3.6.0,” Sep.
2022.

